Strong Nuclear Force Transitions to the Weak Gravitation Force

An atom's nucleus is made up of relatively high mass protons and neutrons, held together by a strong nuclear force that acts over a distance of about 10^{-14} meters or $10 \mathrm{fm}(\mathrm{fm}=$ femtometer $=10^{-15}$ meters). Gravitational forces exist between any two masses, which are derived from the total proton and neutron masses in the atom's nucleus.

As previously noted, there are attractive strong nuclear forces between protons and neutrons that hold the nucleus together, along with repulsive nuclear forces between neutrons and protons that keep them apart. Below is a graph showing the strength in Newtons (N) of the strong nuclear force on its protons and neutrons over a distance of about $2.7 \mathrm{fm}\left(2.7 \times 10^{-15}\right.$ meters $)$.

The graph shows that when the distance between any protons and neutrons is less than about 0.8 fm (at 0 Newtons) that the SNF between them is repelling and that when the distance between the protons and neutrons are greater than 0.8 fm the SNF is attracting. From this graph we can see that the attracting SNF is strongest $(-25,000 \mathrm{~N})$ at 1.1 fm and decreases exponentially towards zero past 1.1 fm . But since the SNF force is 10^{39} stronger than the gravitational force (GF), this exponential decrease of force towards 0 Newtons can become an extremely small number.

I propose that beyond 2.7 fm the SNF becomes the GF. Sort of like how high frequency photons can display wave characteristics and how low frequency photons display particle characteristics as the photon's frequency drops into the sound frequency range. Maybe some examples will help.

The weak GF generated from the Hydrogen Atom nucleus:

The hydrogen atom has the smallest mass and nucleus with only 1 proton in a 1.1 fm diameter nucleus and an atomic radius of $53,000 \mathrm{fm}$. The H_{2} gas molecule has two hydrogen nuclei that are $75,000 \mathrm{fm}$ apart with overlapping atomic radii-refer to the diagrams below.

The simple algebraic equation that describes the gravitational force between any two masses is:
$\mathbf{N}=\left[\mathbf{G} \times\left(\mathrm{m}_{1} \times \mathrm{m}_{2}\right)\right] \div \mathbf{R}^{\mathbf{2}}$
Where $\mathbf{N}=$ Newtons of force, \mathbf{G} is the gravitational constant $\left(6.67 \times 10^{-11}\right)$, and \mathbf{R} is the distance in meters between masses m_{1} and m_{2}.
If we use the $1.67 \times 10^{-27} \mathrm{~kg}$ mass of a proton for masses m_{1} and m_{2} we get a GF of:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{GH}_{2}} & =\left[G \times\left(\mathrm{m}_{1} \times \mathrm{m}_{2}\right)\right] \div \mathrm{R}^{2}=\left[6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27} \times 1.67 \times 10^{-27}\right)\right] \div R^{2} \\
& =\left(6.67 \times 10^{-11}\right) \times\left(2.79 \times 10^{-54}\right)=\left(1.86 \times \mathbf{1 0}^{-64}\right) \div \mathbf{R}^{2} \text { Newtons }
\end{aligned}
$$

The distance \mathbf{R} between the centers of the two nuclei of a H_{2} molecule is $0.75 \times 10^{-10} \mathrm{~m}$ (or $75,000 \mathrm{fm}$) giving the GF between the two nuclei of:

$$
\mathrm{N}_{\mathrm{GH}_{2}}=1.86 \times 10^{-64} \div\left(0.75 \times 10^{-10}\right)^{2}=1.86 \times 10^{-64} \div\left(0.56 \times 10^{-20}\right)=3.3 \times 10^{-44} \text { Newtons }
$$

We can now compare this GF strength to the maximum strength of the SNF for an H_{2} molecule. The maximum SNF ($\mathrm{N}_{\text {SNF }}$) is $25,000 \mathrm{~N}$ (or 2.5×10^{4}) Newtons. Thus when comparing the GF to the SNF we have a ratio of:

$$
\mathrm{N}_{\mathrm{GH}_{2}} \div \mathrm{N}_{\mathrm{SNF}}=\left(3.3 \times 10^{-44}\right) \div\left(2.5 \times 10^{4}\right)=1.3 \times 10^{-48} \text { (not } 10^{-39} \text { stronger) }
$$

Thus, the distance \mathbf{R} where the SNF becomes the GF must be shorter than $75,000 \mathrm{fm}$. If we choose a distance of 2.7 fm , which is outside the 1.1 fm hydrogen nucleus, but within the hydrogen atom's 53,000 fm radius we have:

$$
\mathrm{N}_{\mathrm{GH}_{2}}=1.86 \times 10^{-64} \div\left(2.7 \times 10^{-15}\right)^{2}=1.86 \times 10^{-64} \div\left(7.29 \times 10^{-30}\right)=0.255 \times 10^{-34}=2.55 \times 10^{-35}
$$

This gives a GF to SNF ratio of $\mathrm{N}_{\mathrm{GH}_{2}} \div \mathrm{N}_{\mathrm{SNF}}=\left(2.55 \times 10^{-35}\right) \div\left(2.5 \times 10^{4}\right)=1.0 \times 10^{-39}$

For H_{2} it seems that $2.7 \mathrm{fm}\left(2.7 \times 10^{-15} \mathrm{~m}\right)$ is the distance from the 1.1 fm nucleus that the SNF becomes the 10^{-39} weaker GF.

Thus, the exponentially declining SNF transitions to the 10^{-39} weaker GF about 2-3 fm outside the 1.1 fm hydrogen nucleus, but within the $53,000 \mathrm{fm}$ hydrogen atom's radius.

The weak GF generated from the heavier Oxygen Atom nucleus:

The oxygen atom has 8 protons and 8 neutrons in a 3.0 fm diameter nucleus with an atomic radius of $74,000 \mathrm{fm}$. The O_{2} gas molecule has two overlapping atomic radii that are 121,000 fm apart-refer to the diagrams below.

An oxygen atom with 8 protons and 8 neutrons has a mass of $\left(16 \times 1.67 \times 10^{-27} \mathrm{~kg}\right)=26.7 \times 10^{-27}$ kg . Thus the equation for oxygen is:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{GO}_{2}} & =\left[\mathrm{G} \times\left(\mathrm{m}_{1} \times m_{2}\right)\right] \div \mathrm{R}^{2}=\left[6.67 \times 10^{-11} \times\left(26.67 \times 10^{-27} \times 26.7 \times 10^{-27}\right)\right] \div R^{2} \\
& =\left(6.67 \times 10^{-11}\right) \times\left(711 \times 10^{-54}\right)=\left(4.74 \times 10^{-62}\right) \div \mathbf{R}^{2} \text { Newtons }
\end{aligned}
$$

At a distance \mathbf{R} of $1.21 \times 10^{-10} \mathrm{~m}(121,000 \mathrm{fm})$ between the two oxygen nuclei in an O_{2} molecule we have a gravitational force of:
$\mathrm{N}_{\mathrm{GO}_{2}}=\left(4.74 \times 10^{-62}\right) \div\left(1.21 \times 10^{-10}\right)^{2}=\left(4.74 \times 10^{-62}\right) \div\left(1.46 \times 10^{-20}\right)=3.25 \times 10^{-42}$ Newtons
This gives us a $\mathrm{N}_{\mathrm{GO}_{2}} \div \mathrm{N}_{\mathrm{SNF}}$ forces ratio of:

$$
\mathrm{N}_{\mathrm{GO}_{2}} \div \mathrm{N}_{\mathrm{SNF}}=\left(3.25 \times 10^{-42}\right) \div\left(2.5 \times 10^{4}\right)=1.3 \times 10^{-46} \text { (not } 10^{-39} \text { stronger) }
$$

Thus, the distance \mathbf{R} where the SNF becomes the GF must be shorter than $121,000 \mathrm{fm}$. If we choose a distance \mathbf{R} of 43 fm , which is outside the 3.0 fm oxygen nucleus, but within the oxygen atom's radius we have:

$$
\mathrm{N}_{\mathrm{GO}_{2}}=\left(4.74 \times 10^{-62}\right) \div\left(44 \times 10^{-15}\right)^{2}=\left(4.74 \times 10^{-62}\right) \div\left(18.5 \times 10^{-28}\right)=2.56 \times 10^{-35} \text { Newtons }
$$

This gives us a $\mathrm{N}_{\mathrm{GO}_{2}} \div \mathrm{N}_{\mathrm{SNF}}$ ratio of $\mathrm{N}_{\mathrm{GO}_{2}} \div \mathrm{N}_{\mathrm{SNF}}=\left(2.56 \times 10^{-35}\right) \div\left(2.5 \times 10^{4}\right)=1.0 \times 10^{-39}$

Thus for the oxygen molecule, the exponentially declining SNF transitions to the 10^{-39} weaker GF about 43 fm outside the O_{2} nucleus, but within the $74,000 \mathrm{fm}$ oxygen atom's radius.

The weak GF generated from a heavy Gold Atom nucleus:

The Au atom has 79 protons and 118 neutrons in a 7.0 fm diameter nucleus with an atomic radius of $146,000 \mathrm{fm}$. Two gold molecules in a "face centered cubic" structure are $576,000 \mathrm{fm}$ apart and their non-overlapping atoms have a radius of $146,000 \mathrm{fm}$-refer to the diagrams below.

The Au atom (much heavier than the hydrogen or oxygen atoms) has 79 protons and 118 neutrons in a 7.0 fm diameter nucleus. Refer to the diagrams below.

The mass of a gold atom is: $197 \times 1.67 \times 10^{-27} \mathrm{~kg}=329 \times 10^{-27} \mathrm{~kg}=3.29 \times \times 10^{-25} \mathrm{~kg}$.

$$
\begin{aligned}
N_{G A u} & =\left[G \times\left(m_{1} \times m_{2}\right)\right] \div R^{2}=\left[6.67 \times 10^{-11} \times\left(3.29 \times 10^{-25} \times 3.29 \times 10^{-25}\right)\right] \div R^{2} \\
& =\left(6.67 \times 10^{-11}\right) \times\left(10.8 \times 10^{-50}\right)=\left(7.8 \times \mathbf{1 0}^{-60}\right) \div R^{2} \text { Newtons }
\end{aligned}
$$

At a distance of $5.76 \times 10^{-10} \mathrm{~m}(576,000 \mathrm{fn})$ between two gold nuclei we have GF of:

$$
\mathrm{N}_{\mathrm{GAu}}=\left(7.8 \times 10^{-60}\right) \div\left(5.76 \times 10^{-10}\right)^{2}=\left(7.8 \times 10^{-60}\right) \div\left(33.2 \times 10^{-20}\right)=2.35 \times 10^{-39} \text { Newtons }
$$

This gives us a $\mathrm{N}_{\mathrm{GAu}} \div \mathrm{N}_{\mathrm{SNF}}$ forces ratio of:

$$
\mathrm{N}_{\mathrm{GAU}} \div \mathrm{N}_{\mathrm{SNF}}=\left(2.35 \times 10^{-39}\right) \div\left(2.5 \times 10^{4}\right)=0.94 \times 10^{-43} \quad \text { (not } 10^{-39} \text { stronger) }
$$

Thus, the distance \mathbf{R} where the SNF becomes the GF must be shorter than $576,000 \mathrm{fm}$. If we choose a distance \mathbf{R} of 550 fm , which is outside the 7.0 fm gold nuclei, but within the 146,000 fm gold atom's radius we get.

$$
N_{\text {GAu }}=\left(7.8 \times 10^{-60}\right) \div\left(5.5 \times 10^{-13}\right)^{2}=\left(7.8 \times 10^{-60}\right) \div\left(31 \times 10^{-26}\right)=2.5 \times 10^{-35} \text { Newtons }
$$

This gives us a $\mathrm{N}_{\mathrm{GAu}} \div \mathrm{N}_{\mathrm{SNF}}$ ratio of $\mathrm{N}_{\mathrm{GAu}} \div \mathrm{N}_{\mathrm{SNF}}=\left(2.5 \times 10^{-35}\right) \div\left(2.5 \times 10^{4}\right)=01.0 \times 10^{-39}$

For Au it seems that 550 fm (550 $\times 10^{-15}$) is the distance from 7.0 fm gold nucleus where the SNF becomes the 10^{-39} weaker GF, but within the $146,000 \mathrm{fm}$ gold atom's radius.

In conclusion, the SNF transitions into the weak GF outside an atoms nucleus, but within that atoms radius and extends onward to combine with other collected masses.

